On the Asymptotic Stability of Bound States in 2D Cubic Schrödinger Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the asymptotic stability of bound states in 2D cubic Schrödinger equation

We consider the cubic nonlinear Schrödinger equation in two space dimensions with an attractive potential. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small, localized in space initial data, converge to the set of bound states. Therefore, the center manifold in this problem is a glo...

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases

We consider a class of nonlinear Schrödinger equations in two space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions ...

متن کامل

On Asymptotic Stability of Standing Waves of Discrete Schrödinger Equation in Z

We prove an analogue of a classical asymptotic stability result of standing waves of the Schrödinger equation originating in work by Soffer and Weinstein. Specifically, our result is a transposition on the lattice Z of a result by Mizumachi [M1] and it involves a discrete Schrödinger operator H = −∆+q. The decay rates on the potential are less stringent than in [M1], since we require q ∈ l1,1. ...

متن کامل

A ug 2 00 8 ON ASYMPTOTIC STABILITY OF STANDING WAVES OF DISCRETE SCHRÖDINGER EQUATION IN

We prove an analogue of a classical asymptotic stability result of standing waves of the Schrödinger equation originating in work by Soffer and Weinstein. Specifically, our result is a transposition on the lattice Z of a result by Mizumachi [M1] and it involves a discrete Schrödinger operator H = −∆+q. The decay rates on the potential are less stringent than in [M1], since we require q ∈ l1,1. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2007

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-007-0233-3